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1 Understanding the Nature
2 of the Geometric Work Through Its
3 Development and Its Transformations

4 Kuzniak Alain

5 Abstract The question of the teaching and learning of geometry has been pro-
6 foundly renewed by the appearance of Dynamic Geometry Software (DGS). These
7 new artefacts and tools have modified the nature of geometry by changing the
8 methods of construction and validation. They also have profoundly altered the
9 cognitive nature of student work, giving new meaning to visualisation and exper-

10 imentation. In our presentation, we show how the study of some geneses (figural,
11 instrumental and discursive) could clarify the transformation of geometric knowl-
12 edge in school context. The argumentation is supported on the framework of
13 Geometrical paradigms and Spaces for Geometric Work that articulates two basic
14 views on a geometer’s work: cognitive and epistemological.

15 Keywords Geometric work � Visualisation � Geometrical paradigm
16

17 Introduction

18 The influence of tools, especially drawing tools, on Geometry development at
19 school has recently improved greatly due to the appearance of DGS. The traditional
20 opposition between practical and theoretical aspects of geometry has to be
21 rethought. It’s well known that we can approach Geometry through two main
22 routes:

23 1. A concrete approach which tends to reduce geometry to a set of spatial and
24 practical knowledge based on material world.
25 2. An abstract approach oriented towards well organized discursive reasoning and
26 logical thinking.
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27 With the social cynicism of the Bourgeoisie in the mid-nineteenth century, the
28 first approach was for a long time reserved to children coming from the lower class
29 and the second was introduced to train the elite who needed to think and manage
30 society.
31 Today, in France, this conflict between both approaches stays more hidden in
32 Mathematics Education but such discussions have reappeared with the social
33 expectation supported by the Organisation for Economic Co-operation and
34 Development (OECD) and its “bras armé” Programme for International Student
35 Assessment (PISA) with the opposition between “Mathematical literacy” and
36 “Advanced Mathematics”.
37 In the present paper, I will leave aside sociological and ideological aspects and
38 focus on what could be a didactic approach, keeping in mind a possible scientific
39 approach to a more practical geometry referring to approximation and measure, in
40 the sense Klein used when he suggested a kind of approximated Pascal’s theorem
41 on conics:

42 Let six points be roughly located on a conic: if we draw the lines roughly joining points and
43 they intersect at a, b and c, then these points are roughly aligned. (Klein 1903).

44 The present presentation will be supported by a first example showing what kind
45 of contradiction exists in French Education where no specific work on approxi-
46 mation exists during compulsory school. This contradiction appears as a source of
47 confusion and misunderstandings between teachers and students. We were lead to
48 introduce some theoretical perspectives aiming at understanding and solving this
49 trouble. In the following, our theoretical framework for studies in Geometry will be
50 introduced and used to launch some perspectives.

51 Complexity of the Geometric Work

52 Mathematical domains are constituted by the aggregation and organization of
53 knowledge. A mathematical domain is the object of various interpretations when it
54 is transformed to be taught. These interpretations will also depend on school
55 institutions. The case of geometry is especially complex at the end of compulsory
56 school, as we will show in the following.
57 The following problem was given for the French examination at Grade 9 in 1991
58 (Table 1).

Table 1 A geometric problem

Construct a square ABCD with side 5 cm
1. Compute BD
2. Draw the point I on [BD] such that BI = 2.8 cm,
and then the point J on [BC] such that JC = 3 cm
Is the line (IJ) parallel to the line (DC)?
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59 The intuitive evidence (the lines are parallel) contradicts the conclusion expected
60 from a reasoning based on properties (the lines are not parallel). Students are faced
61 with a variety of tasks referring to different, somewhat contradictory conceptions
62 and the whole forms a fuzzy landscape:

63 1. In the first question, a real drawing is requested. Students need to use some
64 drawing and measure tools to build the square and control and validate the
65 construction.
66 2. Students then have to compute a length BD using the Pythagorean theorem and
67 not measure it with drawing tools. But which is the nature of the numbers
68 students have to use to give the result: An exact value with square roots, or an
69 approximate one with decimal numbers which is well adapted to using con-
70 structions and that allows students to check the result on the drawing?
71 3. In the third question—are the lines parallel?—students work again with con-
72 structions and have to place two points (I and J) by measuring lengths. Moreover,
73 giving the value 2.8 can suggest that the length is known up to one digit and
74 could encourage students to use approximated numbers rounded to one digit. In
75 that case is equal to 1.4 and both ratios are equal, which implies the parallelism
76 by the Thales’ Theorem related to similarity. If students keep exact values and
77 know that is irrational, the same Theorem implies that the lines are not parallel.

78 With Grade 9 Students

79 The problem was given in a Grade 9 class (22 students), one week after a lecture on
80 exact value with square roots and its relationships to length measurement. After
81 they had spent 30 min working on the problem, half of the students answered that
82 the lines were parallel and the other half answered that they were not. On the
83 teacher’s request, they used the problem of approximated values to explain the
84 differences among them. At the teacher’s invitation, they started again to think
85 about their solutions. At the end, 12 concluded the lines were not parallel, 8 that
86 they were and 2 hesitated.
87 Indeed, after studying their solutions and their comments on the problem, we can
88 conclude that students’ difficulties did not generally relate to a lack of knowledge
89 on geometric properties, but to their interpretations of the results. They had trouble
90 with the conclusions to be drawn from Thales’ Theorem. Even after discussion,
91 students expressed their perplexity about the result and its fluctuation. One student
92 said “I don’t know if they are parallel for when I round off, the ratios are equal and
93 so the lines are parallel, but they are not parallel when I take the exact values”. For
94 students, one answer is not more adequate than another. This gives birth to a
95 geometric conception where some properties could be sometimes true or false. How
96 to make students overcome the contradiction? A first possibility is to force the
97 entrance in the didactical contract expected by the class’s teacher, who explained
98 that at this moment in Grade 9, it must be clear that “a figure is not a proof”.

Understanding the Nature of the Geometric Work … 3
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99 Working on approximation and thinking about the nature of geometry taught
100 during compulsory school open a second way we will explore with geometrical
101 paradigms in the following.

102 Geometrical Paradigms and Three Elementary Geometries

103 The previous example and numerous others of the same kind show that a single
104 viewpoint on geometry would miss the complexity of the geometric work, due to
105 different meanings that depend both on the evolution of mathematics and school
106 institutions. At the same time, we saw that students are strongly disturbed by this
107 diversity of approaches. Geometrical paradigms were introduced into the field of
108 didactics of geometry to take into account the diversity of points of view (Kuzniak
109 and Houdement 1999, 2003).
110 The idea of geometrical paradigms was inspired by the notion of paradigm
111 introduced by Kuhn (1962, 1966) in his work on the structure of the scientific
112 revolutions. In a global view, one paradigm consists off all the beliefs, techniques
113 and values shared by a scientific group. It indicates the correct way for putting and
114 starting the resolution of a problem. Within the restricted frame of the teaching and
115 learning of geometry, our study is limited to elementary geometry, and the notion of
116 paradigm is used to pinpoint the relationships between geometry and belief or
117 mathematical theories.
118 With the notion of paradigms, Kuhn has enlarged the idea of a theory to include
119 the members of a community who share a common theory.

120 A paradigm is what the members of a scientific community share, and, a scientific com-
121 munity consists of men who share a paradigm (Kuhn 1966, p. 180).

122 When people share the same paradigm, they can communicate very easily and in
123 an unambiguous way. By contrast, when they stay in different paradigms, misun-
124 derstandings are frequent and can lead, in certain cases, to a total lack of com-
125 prehension. For instance, the use and meaning of figures in geometry depend on the
126 paradigm. Sometimes it’s forbidden to use the drawing to prove a property by
127 measuring and only heuristic uses of figures are allowed.
128 To bring out geometrical paradigms, we used three viewpoints: epistemological,
129 historical and didactical. That led us to consider the three following paradigms
130 described below.

131 Geometry I: Natural Geometry

132 Natural Geometry has the real and sensible world as a source of validation. In this
133 Geometry, an assertion is supported using arguments based upon experiment and

AQ2
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134 deduction. Little distinction is made between model and reality and all arguments
135 are allowed to justify an assertion and convince others of its correctness. Assertions
136 are proven by moving back and forth between the model and the real: The most
137 important thing is to develop convincing arguments. Proofs could lean on drawings
138 or observations made with common measurement and drawing tools such as rulers,
139 compasses and protractors. Folding or cutting the drawing to obtain visual proofs
140 are also allowed. The development of this geometry was historically motivated by
141 practical problems.
142 The perspective of Geometry I is of a technological nature.

143 Geometry II: Natural Axiomatic Geometry

144 Geometry II, whose archetype is classic Euclidean Geometry, is built on a model
145 that approaches reality. Once the axioms are set up, proofs have to be developed
146 within the system of axioms to be valid. The system of axioms could be incomplete
147 and partial: The axiomatic process is a work in progress with modelling as its
148 perspective. In this geometry, objects such as figures exist only by their definition
149 even if this definition is often based on some characteristics of real and existing
150 objects.
151 Both Geometries have a close link to the real world even if it is in different ways.

152 Geometry III: Formal Axiomatic Geometry

153 To these two approaches, it is necessary to add a third Geometry (Formal Axiomatic
154 Geometry) which is little present in compulsory schooling but which is the implicit
155 reference of teachers’ trainers when they have studied mathematics in university,
156 which is very influenced by this formal and logical approach.
157 In Geometry III, the system of axioms itself, disconnected from reality, is
158 central. The system of axioms is complete and unconcerned with any possible
159 applications in the world. It is more concerned with logical problems and tends to
160 complete “intuitive” axioms without any “call in” to perceptive evidence such as
161 convexity or betweenness. Moreover, axioms are organized in families which
162 structure geometrical properties: affine, euclidean, projective, etc.
163 These three approaches (and this is one original aspect of our viewpoint) are not
164 ranked: Their perspectives are different and so the nature and the handling of
165 problems change from one to the next. More than the name, what is important here
166 is the idea of three different approaches of geometry: Geometry I, II and III.

Understanding the Nature of the Geometric Work … 5
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167 Back to the Example

168 If we look again at our example, students—and teachers—are not explicitly aware
169 of the existence of two geometrical approaches to the problem, each coherent and
170 possible. And students generally think within the paradigm which seems natural to
171 them and close to perception and instrumentation—Geometry I. But in this
172 geometry, measurement is approximated and known only over an interval.
173 Parallelism of lines depends on the degree of approximation. Teachers insist on a
174 logical approach—Geometry II—which leads the students to conclude blindly that
175 the lines are not parallel, against what they see.
176 It could be interesting to follow Klein’s ideas and introduce a kind of
177 “approximated” theorems, more specifically here an “approximated” Thales’
178 Theorem: If the ratios are “approximately” equal then the lines are “almost” par-
179 allel. In that case, it would be possible to reconcile what is seen on the drawing and
180 what is deduced based on properties.
181 Developing thinking on approximation in Geometry can be supported by DGS
182 which favour a geometric work into Geometry I but with a better control of the
183 degree of approximation. It is the case, for instance, with the CABRI version we
184 used during the session with students. In this version, an “oracle” is available which
185 can confirm or not the validity of a property seen on the drawing. Here, the par-
186 allelism of the two lines was confirmed by the “oracle” according to the approach
187 with approximation of the problem.
188 Many problems allow discussion of the validity of a theorem or property in
189 relationship to numerical fields. For instance, CABRI oracle asserts that (EF) and
190 (BC) are parallel lines in a triangle ABC when E and F are respectively defined as the
191 midpoints of [AB] and [AC]. But, if E is defined as the midpoint of [AB], when we
192 drag a point F on [AC] it is possible that CABRI oracle never concludes that (EF)
193 and (BC) are parallel for any position of F. These variations in the conclusion need
194 an explanation and provoke a discussion among students which can be enriched by
195 the different perspectives on Geometry introduced by geometrical paradigms.
196 To discuss the question in-depth and think about new routes in the teaching and
197 learning of geometry, we will introduce some details about the notion of Space for
198 Geometric Work.

199 The Notion of Space for Geometric Work Within
200 the Framework of Didactics of Geometry

201 At school, Geometry is not a disembodied set of properties and objects reduced to
202 signs manipulated by formal systems: It is at first and mainly a human activity.
203 Considering mathematics as a social activity that depends on the human brain leads
204 to understanding how a community of people and individuals use geometrical
205 paradigms in everyday practice of the discipline. When specialists are trying to
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206 solve geometric problems, they go back and forth between the paradigms and they
207 use figures in various ways, sometimes as a source of knowledge and, at least for a
208 while, as a source of validation of some properties. However, they always know the
209 exact status of their hypotheses and the confidence they can give to each one of
210 these conclusions.
211 When students do the same task, we are not sure about their ability to use
212 knowledge and techniques related to Geometry. That requires an observation of
213 geometric practices set up in a school frame, and, more generally, in professional and
214 everyday contexts, if we aim to know common uses of mathematics tools. The whole
215 work will be summarized under the notion of Space for Geometric Work (SGW), a
216 place organized to enable the work of people solving geometric problems. Individuals
217 can be experts (the mathematician) or students or senior students in mathematics.
218 Problems are not a part of the Work Space but they justify and motivate it.
219 Architects define Work Spaces as places built to ensure the best practice of a
220 specific work (Lautier 1999). To conceive a Work Space, Lautier suggests thinking
221 of it according to three main issues: a material device, an organization left at the
222 designers’ responsibility and finally a representation which takes into account the
223 way the users integrate this space. We do not intend to take up this structure
224 oriented to the productive work without any modifications, but it seems to us
225 necessary to keep in mind these various dimensions, some more material and the
226 others intellectual.

227 The Epistemological Level

228 To define the Space for Geometric Work, we introduced three characteristic com-
229 ponents of the geometrical activity into its purely mathematical dimension. These
230 three interacting components are the following:

231 A real and local space as material support with a set of concrete and tangible
232 objects.
233 A set of artefacts such as drawing instruments or software.
234 A theoretical frame of reference based on definitions and properties.

235 These components are not simply juxtaposed but must be organized with a
236 precise goal depending on the mathematical domain in its epistemological
237 dimension. This justifies the name epistemological plane given to this first level. In
238 our theoretical frame, the notion of paradigms brings together the components of
239 this epistemological plane. The components are interpreted through the reference
240 paradigm and in return, through their different functions, the components specify
241 each paradigm. When a community can agree on one paradigm, they can then
242 formulate problems and organize their solutions by favouring tools or thought styles
243 described in what we name the reference SGW. To know this SGW, it will be
244 necessary to bring these styles out by describing the geometrical work with rhetoric
245 rules of discourse, treatment and presentation.

Understanding the Nature of the Geometric Work … 7
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246 The Cognitive Level

247 We introduced a second level, centred on the cognitive articulation of the SGW
248 components, to understand how groups, and also particular individuals, use and
249 appropriate the geometrical knowledge in their practice of the domain. From Duval
250 (2005), we adapted the idea of three cognitive processes involved in geometrical
251 activity.

252 A visualization process connected to the representation of space and material
253 support;
254 A construction process determined by instruments (rules, compass, etc.) and
255 geometrical configurations;
256 A discursive process which conveys argumentation and proofs.

257 From Gonseth (1945–1952), we retained the idea of conceiving geometry as the
258 synthesis between different modes of knowledge: intuition, experiment and
259 deduction (Houdement and Kuzniak 1999).
260 The real space will be connected to visualization by intuition, artefacts to con-
261 struction by experiment and the reference model to the notion of proof by deduc-
262 tion. This can be summarized in the following diagram (Fig. 1).

Fig. 1 The space for geometric work

AQ3
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263 Building a Space for Geometric Work: A Transformation
264 Process

265 On the Meaning of Genesis

266 In the following, we will consider the formation of SGW by teachers and students.
267 Our approach intends to better understand the creation and development of all
268 components and levels existing in the diagram above. The geometric work will be
269 considered as a process involving creation, development and transformation. The
270 whole process will be studied through the notion of genesis, used in a general
271 meaning which is not only focused on origin but also on development and trans-
272 formation of interactions. The transformation process takes place and, finally, forms
273 a structured space, the Space for Geometric Work.

274 Various SGW Levels

275 In a particular school institution, the resolution of geometric tasks implies that one
276 specific SGW has been developed and well organized to allow students to enter into
277 the problem solving process. This SGW has been named appropriately and the
278 appropriate SGW needs to meet two conditions: it enables the user to solve the
279 problem within the right geometrical paradigm, and it is well built, in the sense in
280 which its various components are organized in a valid way. The designers play a
281 role similar to architects conceiving a working place for prospective users. When
282 the problem is put to an actual individual (young student, student or teacher), the
283 problem will be treated in what we have named a personal SGW. The geometric
284 work at school can be described thanks to three SGW levels: Geometry intended by
285 the institution is described in the reference SGW, which must be fitted out in an
286 appropriate SGW, enabling an actual implementation in a classroom where every
287 student works within his or her personal SGW.

288 Various Geneses of the Space for Geometric Work

289 As we have seen, geometrical work is framed through the progressive implemen-
290 tation of various SGW. Each SGW, and specifically the personal SGW, requires a
291 general genesis which will lean on particular geneses connecting the components
292 and cognitive processes essential to the functioning of the whole Geometric
293 Working Space. The SGW epistemological plane needs to be structured and
294 organized through a process oriented by geometrical paradigms and mathematical
295 considerations. This process has been named epistemological genesis. In the same
296 way, the cognitive plane needs a cognitive genesis when it is used by a generic or

Understanding the Nature of the Geometric Work … 9
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297 particular individual. Specific attention is due for some cognitive processes such as
298 visualization, construction and discursive reasoning.
299 Both levels, cognitive and epistemological, need to be articulated in order to
300 ensure a coherent and complete geometric work. This process supposes some
301 transformations that can be pinpointed through three fundamental geneses strictly
302 related to our first diagram (Fig. 2):

303 An instrumental genesis which transforms artefacts in tools within the con-
304 struction process.
305 A figural and semiotic genesis which provides the tangible objects their status of
306 operating mathematical objects.
307 A discursive genesis of proof which gives a meaning to properties used within
308 mathematical reasoning.

309 We will examine how it comes into geometrical work by clarifying each genesis
310 involved into the process.

311 On Figural Genesis

312 The visualization question came back recently to the foreground of concerns in
313 mathematics and didactics after a long period of ostracism and exclusion for
314 suspicion.

Fig. 2 Geneses into the geometrical work space

10 K. Alain
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315 In geometry, figures are the visual supports favoured by geometrical work. This
316 led us, in a slightly restrictive way, to introduce a figural genesis within the SGW
317 framework to describe the semiotic process associated with visual thinking and
318 involved in geometry. This process has been especially studied by Duval (2005)
319 and Richard (2004). Duval has given some perspectives to describe the transition
320 from a drawing seen as a tangible object to the figure conceived as a generic and
321 abstract object. For instance, he spoke of a biologist viewpoint when it is enough to
322 recognize and classify geometric objects such as triangle or Thales’ configurations
323 often drawn in a prototypical way. He also introduced the idea of dimensional
324 deconstruction to explain the visual work required on a figure to guide the per-
325 ceptive process. In that case, a figure needs to be seen as a 2D-object (a square as an
326 area), a set of 1D-objects (sides) or 0D-objects (vertices). Conversely, Richard
327 insists on the coming down process from the abstract and general object to a
328 particular drawing.

329 On Instrumental Genesis

330 A viewpoint on traditional drawing and measuring instruments depends on geo-
331 metrical paradigms. These instruments are usually used for verifying or illustrating
332 some properties of the studied objects. The appearance of computers has completely
333 renewed the question of the role of instruments in mathematics by facilitating their
334 use and offering the possibility of dynamic proofs. This aspect is related to the
335 question of proof mentioned in the preceding paragraph, but the ability to drag
336 elements adds a procedural dimension which further increases the strength of proof
337 in contrast to static perception engaged in paper and pencil environments. But the
338 ability with the use of artefacts is not easy to reach by the students. At the same
339 time, teachers need to develop specific knowledge for implementing software in a
340 classroom. Based on Rabardel’s works on ergonomic, Artigue (2002) stressed the
341 necessity of an instrumental genesis with two main phases that we can insert in our
342 frame. The coming up transition, from the artefacts to the construction of geometric
343 configurations, is called instrumentation and gives information on how users
344 manipulate and master the drawing tools. The coming down process, from the
345 configuration to the adequate choice and the correct use of one instrument, related
346 to geometric construction procedures, is called instrumentalisation. In this second
347 process, geometric knowledge are engaged and developed.

348 On Discursive Genesis of Reasoning

349 The geometrization process, which combines geometric shapes and mathematical
350 concepts, is central to mathematical understanding. We saw the strength of images
351 or experiments in developing or reinforcing certainty in the validity of an

Understanding the Nature of the Geometric Work … 11

Layout: T1 Standard Unicode Book ID: 335332_1_En Book ISBN: 978-3-319-17186-9

Chapter No.: 1 Date: 16-4-2015 Time: 11:46 am Page: 11/15

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

352 announced result. However, how can we make sure that students understand the
353 logic of proof when they do not express their argumentation in words, but instead
354 base it on visual reconstructions that can create illusions? A discursive explanation
355 with words is necessary to argue and to convince others.
356 The nature and importance of written formulations differ from one paradigm to
357 another. In most axiomatic approaches, it is possible to say that mathematical
358 objects exist only in and by their definition. This is obviously not the case in the
359 empiricist approach, where mathematical objects are formed from a direct access to
360 more or less prototypical concrete objects.

361 Towards a Coherent Geometric Work at the End
362 of Compulsory School

363 Using the theoretical framework introduced above, we will insist here on some
364 contradictory ways we encountered in French geometry education and highlight
365 what could be a coherent approach using both geometric paradigms. For that, we
366 draw some conclusions from a work of Lebot (2011) who has studied different
367 ways of teaching the introduction for the notion of angles at Grades 6 to 8. Using
368 the SGW diagram, it is possible to describe possible routes students may take when
369 they use software or drawing tools to construct figures and solve problems. Lebot
370 has observed interesting differences visible on the following diagrams and we will
371 discuss some among them.
372

374374

375 A Coherent GI Work Space

376 Generally, a geometric task begins with a construction performed using either
377 traditional drawing tools or digital geometric software. Each time, the construction
378 is adjusted and controlled by the gesture and vision.

12 K. Alain
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379 In this approach to geometry, the trail into the SGW diagram is like the one of
380 Diagram 5 and done in a first sense (Instrumental—Figural and then Discursive)
381 which characterizes an empirical view on geometric concepts.
382 A coherent way to work theoretically in Geometry I would be to use “approx-
383 imated” theorems in the sense we introduced (Section “A Coherent GII Work
384 Space”) where the numerical domain is based on decimal numbers rather than real
385 numbers. Theoretical discourse must justify what we see and not contradict it. This
386 approach has been developed by Hjelmsev (1939) among others.

387 A Coherent GII Work Space

388 In the Geometry II conception, the focus is first on the discourse that structures the
389 figure and controls its construction. This time, the route is trailed (Diagram 8) in an
390 opposite sense (Discursive—Figural—Instrumental) and the figure rests on its
391 definition: All properties could be derived from the definition without surprises.
392 In the traditional teaching and learning of geometry, students are frequently
393 asked to start geometric problems with the construction of real objects. This leads
394 them to work in the sense (I-F-D) of the Diagram 5. But for the teacher, the actual
395 construction of an object is not really important. The discursive approach is pre-
396 ferred and expected, as in the Diagram 8 covered in sense (D-F-I): what I know is
397 stronger than what I see and measure. In this pedagogical approach, elements
398 coming from Geometry I support students’ intuition for working in Geometry II,
399 leading the formation of a (GII/GI) Work Space. But at the same time, students may
400 believe that they work in a (GI/GII) Work Space where the objective is to think
401 about real objects using some properties coming from Geometry II (Thales and
402 Pythagorean Theorems) to avoid direct measurement on the drawing. The geo-
403 metric work made by students could be incomplete as in Diagram 6 where students
404 stay in an experimental approach without any discursive conclusion. They have
405 paid attention to the construction task which requires time and care, but this work is
406 neglected in the proof process expected by the teacher, where figures play only a
407 heuristic supporting role. That can lead to another form of incomplete work but this
408 time favoured by teachers as in Diagram 4 where there exists only interaction
409 between proof and figure.
410 The inverse circulation of the geometric work in Geometry I and Geometry II
411 can lead to a break in the geometric work that forms, when only one approach is
412 explicitly privileged. We support the idea that both geometric paradigms must be
413 included in geometry learning to develop a coherent (G|GII) Work Space where
414 both paradigms have the same importance. Only when this condition is met, can an
415 approximation have both a numerical and geometrical meaning, and can a work
416 space be created suitable for introducing “almost parallel” lines in relationship to
417 decimal numbers and where “strictly parallel” relate to real numbers. That would
418 help resolve problems of mathematical coherency such as those experienced by
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419 students who asserted that they did not know if the lines were parallel because
420 “the lines (IJ) and (DC) are parallel if we round off, but they are not if we take the
421 exact value”.

422 Beyond the Space for Geometric Work

423 How can the notion of SGW be extended beyond the Geometry? First, we can take
424 into account the context within which the geometric work is developed. This context
425 can be of social nature or could deal with the cognitive dimension in the teaching and
426 learning processes as Arzarello and Robutti (2008) did by introducing the “Space of
427 Action, Production and Communication” viewed as metaphorical space where the
428 student’s cognitive processes mature through a variety of social interactions. Within
429 these frameworks, it is clear that the notion of SGW can operate and pinpoint on
430 what, at the end, is the goal of an educational approach in mathematics: to make an
431 adequate mathematical work. This assertion leads us to another kind of general-
432 ization related to what is mathematical work. In this direction, we have started some
433 investigations with researchers interested in Calculus, Probability or Algebra. A
434 third symposium on this topic has been held in Montreal in 2012 and some elements
435 on this approach are given in Kuzniak (2011). The generalization supposes an
436 epistemological study in-depth of the specific mathematical domain and of its
437 relationships to other domains. Indeed, each domain relates to a particular class of
438 problems and the crucial question is to find an equivalent to the role that space has in
439 geometry. Variations and functions for calculus, chance and data for probability and
440 statistics, can play the same role as space and figures in geometry. If it seems that the
441 two planes, epistemological and cognitive, keep the same importance as in geometric
442 work, figural genesis and vizualisation should be changed and reinterpreted through
443 semiotic and representation processes in relationship to the mathematical domain
444 concerned. But it is another story and work in progress.
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